469 research outputs found

    Deiningsprediktie aan de Belgische kust

    Get PDF

    Comparing field observations of sorting patterns along tidal sand waves with theoretical predictions

    Get PDF
    We present a site-by-site comparison between field observations and model predictions of grains size variations over tidal sand waves at six sites in the North Sea. To drive the model, at each location, local sediment characteristics are derived from the described field data, while hydrodynamic conditions are determined from a numerical model for tidal wave propagation in the North Sea. It is found that the theoretical model providesreasonable estimates of the occurring tidally generated bed forms. Moreover, at five of the six locations, the modeldescribes a sorting pattern which concurs with the observed sediment grain size variation, indicating that the model provides a fair description of the processes governing the phenomenon

    An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results

    Get PDF
    A study is presented where satellite images (SeaWiFS), in situ measurements (tidal cycle and snapshot) and a 2D hydrodynamic numerical model have been combined to calculate the long term SPM (Suspended Particulate Matter) transport through the Dover Strait and in the southern North Sea. The total amount of SPM supplied to the North Sea through the Dover Strait is estimated to be 31.74 x 106 t. The satellite images provide synoptic views of SPM concentration distribution but do not take away the uncertainty of SPM transport calculation. This is due to the fact that SPM concentration varies as a function of tide, wind, spring-neap tidal cycles and seasons. The short term variations (tidal, spring-neap tidal cycle) have not been found in the satellite images, however seasonal variations are clearly visible. Furthermore the SPM concentration in the satellite images is generally lower than in the in situ measurements. The representativness of SPM concentration maps derived from satellites for calculating long term transports has therefore been investigated by comparing the SPM concentration variability from the in situ measurements with those of the remote sensing data. The most important constraints of satellite images are related to the fact that satellite data is evidence of clear sky conditions, whereas in situ measurements from a vessel can be carried out also during rougher meteorological conditions and that due to the too low time resolution of the satellite images the SPM concentration peaks are often missed. It is underlined that SPM concentration measurements should be carried out during at least one tidal cycle in high turbidity areas to obtain representative values of SPM concentration

    Monitoring en modellering van het cohesieve sedimenttransport en evaluatie van de effecten op het mariene ecosysteem ten gevolge van bagger- en stortoperatie (MOMO): activiteitsrapport 3 (1 april 2007 - 30 september 2007)

    Get PDF
    The "MOMO" project is part of the general and permanent duties of monitoring and evaluation of the effects of all human activities on the marine ecosystem to which Belgium is committed following the OSPAR convention (1992). The goal of the project is to study the cohesive sediments on the BCP using numerical models as well as by carrying out of measurements. Through this data will be provided on the transport processes, which are essential in order to answer questions on the composition, origin and residence of these sediments on the BCP, the alterations of sediment characteristics due to dredging and dumping operations, the effects of the natural variability, the impact on the marine ecosystem, the estimation of the net input of hazardous substances and the possibilities to decrease this impact as well as this in-put

    Myrrha primary heat exchanger tube rupture: Phenomenology and evolution

    Get PDF
    In the framework of MYRRHA Project, a pool-type experimental and material testing irradiation facility operated with Lead Bismuth Eutectic (LBE) coolant and able to operate in both sub-critical and critical mode is designed to be built in Mol, Belgium, in SCK\u2022CEN domain. In addition to the material testing function, targets of the MYRRHA reactor are to prove the feasibility of the ADS technology as Minor Actinides (MAs) burner and to act as a demonstrative plant for future Gen-IV heavy metal cooled reactors. SCK\u2022CEN entered the pre-licensing phase for the MYRRHA reactor. In order to provide the safety authority all the required data, a complete safety analysis must be performed, studying the transients defined by the list of postulating initiating events. In particular, an accident with potential serious consequences is the Primary Heat Exchanger Tube Rupture (PHXTR), involving the sudden release of single phase or two-phase water from a tube break in a hot liquid metal pool. This accident evolution is strongly characterized by the design of the MYRRHA Primary Heat eXchanger (PHX) and its direct surroundings in the reactor vessel and by the thermal-hydraulical conditions of the MYRRHA primary and secondary cooling system. In the first phase of a PHXTR accident, the water in the Secondary Cooling System (SCS) is released in the Primary System (PS) pool in regime of choked flow due to the pressure difference. Being the water released in an overheated, low-pressure environment, a flashing with potential sudden specific volume increase is expected. The heat transfer phenomena leading to the phase change velocity depend by the actual number of bubbles released in the hot liquid metal pool, function of the actual break size and shape. Its characterization is important for the definition of the overall specific volume increase and for the estimation of the water mass fraction redirected through the Primary Pump in the reactor Lower Plenum, with the risk of void insertion in the core and consequent reactivity excursion. A simplified calculation model to evaluate the history of any given bubble distribution generated by any water flow rate through any break has been set up. The main purpose is to describe the evolution of the main system state variables during the accidental event, by checking the potential insurgency of any reactor safety issue due to pressure peaks or core void insertions
    corecore